Our members are vital for CBI’s ecosystem as they help us develop messages, interventions, roadmap, and our own call for projects. This helps CBI conduct pre-competitive research that benefits all CBI members, the battery industry in general and the wider research community.
As a large battery maker, Clarios are an invaluable member. Additionally, Clarios were instrumental in setting up and supporting the work of CBI’s Research and Innovation Manager, Dr Carl Telford, in developing public funding opportunities in Europe and deliver exciting, game-changing projects.
CBI team visited Clarios HQ in Hanover, Germany, to strengthen this collaboration and to learn more about their current R&D work.
« We have developed the Start-Stop technology in AGM to become the benchmark technology for premium cars with micro-hybrid functionalit. Innovation in process technology like the Clarios Power frame technology has been leading the way and is presently the standard in the industry. For the future, we see a lot of life left in Lead technology. We see further innovation potential in charge acceptance and cycle life to further improve the technology » (Dr Christian Rosenkranz - Vice President Industry and Governmental Relations EMEA at Clarios & Chairman at CBI)
Watch the first video from CBI's visit to Clarios:
The CBI team visited Castanheira do Ribatejo, in Portugal, to meet with Exide Technologies and to find out more about its facilities.
Exide operates two state-of-the-art solar installations at its battery production (in Castanheira do Ribatejo) and battery recycling facilities (in Azambuja), using lead batteries (see our case study here).
José Barreiros (Director Product Development Industrial EMEA at Exide) explained how it works in detail:
« We have a combined capacity of 4.5 MWp, with overall 11.250 solar panels installed. This is enough energy to supply more than 1.500 households. With these solar parks, we have reduced the carbon emission by more than 20% across both sites.
In our production plant, the PV installation is combined with our own battery energy storage system (BESS). It contains 70 inverters and 290 Sonnenschein Solar battery cells, with an available stored energy of around 500kWh. The battery storage system is part of a ‘Green Social Building’. It operates as an island for the factory workers, where the solar panels provide energy during the day and the batteries provide power at night ».
The type of lead batteries used in this Battey Energy Storage System (BESS) are Exide’s very own Sonnenschein Solar gel batteries. This battery range « has been used in complex, large-scale network power applications across the world for many decades », José continued:
« With their proven reliability, maintenance-free and first-class safety features, gel batteries offer a long service life and protection against deep discharge. Also, since lead batteries are fully recyclable at the end-of-life, our Sonnenschein Solar range provides added sustainability for renewable energy storage applications ».
For CBI, energy storage applications utilising battery technology is an increasingly important market-key to help governments around the world meet future electrification and decarbonisation targets and Exide’s Product Development Director agrees:
« As a global player of battery and energy systems, Exide Technologies is in prime position to inspire today’s and tomorrow’s generations with smart energy storage solutions, as we recognize the need to both preserve and energize the world. Exide Technologies offers smart energy storage solutions to support the transition from fossil energy to renewable energy sources. We focus on storage systems and solutions for greenhouse gas reduction and the optimization of TCO in energy-intensive industries.
Our energy storage solutions will enable businesses to become ‘greener’, more productive and in control of their energy usage and costs ».
Another benefit of this project is its unique and innovative Battery Management System (BMS) for lead batteries:
«Our installation is utilizing the battery management system to control the voltage of each cell and the temperature on each string, via four probes, assuring a tight control of the depth of discharge and charge on each string.
Taking into consideration that the battery operates on one cycle per day, this will allow deeper control of the state of health of the cells and act as soon as needed. It also predicts the available energy of the system depending on the power», concluded José.
This installation is one of many worldwide energy storage systems using lead batteries. If you’re interested in more projects like this one, please explore our Interactive Map.
NEWS RELEASE
The U.S. Army has chosen advanced lead battery energy storage systems to enhance its operational effectiveness in disaster zones and in combat.
A project led by Paragon Solutions, Inc., and the Consortium for Battery Innovation (CBI) is providing a new set of systems that can provide power for critical military operations anywhere in the world.
Paragon, a woman-owned engineering firm, and a member of the Consortium for Energy, Environment, and Demilitarization (CEED), partnered with CBI, a global lead battery research hub, to develop the winning proposal in response to a request issued to CEED members by the Consortium Management Group (CMG). The effort is sponsored by the U.S. Government under an Other Transaction Agreement between CMG and the U.S. Army Corps of Engineers.*
Paragon and CBI will develop transportable, robust, lead battery energy storage systems that can be integrated into tactical microgrids and demonstrated at the Contingency Basing Integration Training Evaluation Center (CBITEC) at Fort Leonard Wood, Missouri. The CBITEC site is managed by the U.S Army Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL).
The eighteen-month $3.5 million program also seeks to demonstrate how U.S. Army units can use lead batteries sourced from the Department of Defense supply system and from locally available sources such as vehicles, while increasing the lifecycle for certain battery types to meet battlefield energy demands.
Retired U.S. Army Captain and government technical lead for this project, Tom Decker, said: “This is an important project to the Army because in any type of contingency environment, while in combat situations or following a natural disaster, it all falls back on the Army Corps of Engineers to provide power to continue operations. And this is where lead batteries come in.”
“By being able to use lead batteries that are available on the ground and make an energy resource out of them, we have the ability to continue whatever mission we’re on, be it disaster relief or engaging in combat.”
“This just adds to our capabilities. The durability of lead batteries has been proven over many decades so we know what we’re getting when we use the technology. But then we get the added value of the advanced lead battery systems which the industry supplies, and this is the technology that makes the systems viable.”
“Lead batteries give us the ability to deploy energy storage systems anywhere in the world, enhancing our resiliency. And one of the current US administration’s priorities is reducing carbon footprint, so by decreasing our use of fuel and adopting more innovative energy storage systems, we’re reducing our carbon footprint too.”
Implementation of the systems will be done to NATO specifications, and if successful, would allow for deployment in many different countries. This solution aims to overcome issues with host nation power grids by designing an energy storage system that accepts host nation power, stores it, and then provides it in a form that is compatible with U.S. Army equipment.
The resiliency, safety and reliability of power supplies are priorities for military operations. Lead batteries have been chosen for the project as the technology of choice because of their inherent safety and robustness in extreme weather as well as their availability in the field. Using lead batteries would provide Army Commanders with local sources of batteries in vehicles and telecommunications towers around the world.
The Paragon/CBI team will develop energy storage systems providing between 125kWh to 250kWh of critical energy using three different lead battery technologies provided by US-based battery manufacturers, Advanced Battery Concepts (ABC), East Penn Manufacturing and EnerSys. These operational workhorses will be transportable, easy to operate by military personnel, and can be integrated into tactical microgrids to provide power for critical loads.
The project team will also develop a ‘plug-and-play’ 30 kWh energy storage system, which will give soldiers the ability to plug into an energy storage source made up of used lead batteries found in locally available sources, such as vehicles. Marcus Ferguson, ERDC-CERL project officer, and manager of the CBITEC site said: “After Hurricane Maria in Puerto Rico in 2017, approximately 130,000 damaged vehicles were lying unused with an untapped energy source: lead batteries. If this energy could be harvested, future disaster relief and other military operations, wherever they are in the world, could be provided with reliable, low-cost energy”.
The prototype lead battery energy storage systems will be constructed and tested in various simulated duty cycles to recreate typical field conditions for military operations. The aim is to develop systems that could be rolled out across the U.S. Army. Furthermore, when the lead battery ESS prototypes are connected to Army tactical quiet generators (TQGs) the systems will provide low heat signature and quiet energy assets - essential requirements for U.S. Army activities in the field.
Dr. Matt Raiford, CBI project manager, added: “Lead batteries have been chosen for this important project based on their resilience, consistent performance at all temperatures and their accessibility. This will set a benchmark for smaller microgrids providing essential power and security in a range of settings from remote rural areas to larger military installations.”
Raiford continued: “CBI is committed to developing advanced lead batteries for energy storage applications and the recognition that this mainstay technology has been chosen to support U.S. Army operations is testament to the inherent safety, reliability and sustainability of the technology.”
*Effort sponsored by the U.S. Government under Other Transaction number W9132T209D001 between the Consortium Management Group, Inc., and the Government. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the U.S. Government.
END
Notes to editors:
1: For more information please contact Hywel Jarman in the CBI media office on +44 7718 483887. Visit www.batteryinnovation.org.
They are the future of the lead battery industry: highly-educated, motivated and brimming with new ideas and ambition. CBI spoke to three talented scientists, new to the lead battery industry, to find out more about their perceptions of the workplace and to hear their suggestions about how the industry can continue to attract the brightest and the best.
Max Parker, a PhD Student at Warwick University (United Kingdom); Miguel Rodríguez Gómez, PhD Student at INMA (Spain) and Grace Rocha, a Scientist at ITEMM (Brazil). From industry’s first impressions, learning new areas for innovation and crucial for our future, to the industry’s urgent effort to attract more young talents, they are the voices of a new generation inside the lead battery industry and here’s how they feel about it.
CBI : Tell us a bit about when you first joined this industry. What were your expectations ?
Max : « Batteries are an exciting area with a lot of areas to look at and lots of different things to analyse. Before joining the industry I didn’t really know what made one battery better than the next, why this one can charge faster than the other or why this one lasts longer than the other. Lead batteries are interesting because they have been around for such a long time, but there is still so much more to look at, and still so much more to learn. »
Grace : « To be really honest I didn’t think very much about the whole Lead Battery industry. I just wanted to be part of a great industry with a great social impact, which everybody near around knows Moura does to the city and to the state. Now, I am truly surprised with how much I enjoy working on the field. I see that there is a excitingopportunity for progress learning and development in every area of lead battery technology. »
Miguel : « I had just finished my masters degree and I was looking for research into something related to the energy or climate crisis. Energy storage is essential to be able to cover the off-peak hours of renewable production, and to move away from fossil fuels (which also have rapidly diminishing reserves). So, I started to look for research lines related to batteries. The truth is that I knew almost nothing about lead batteries, I thought there were only in cars and little else, but when I learned a little more and discovered that they can be used for many things and above all that recycling is very high, I decided to go for it.”
CBI : And now that you’ve been working for the industry, what’s your current perception ?
Max : « I think that there are lots of challenges ahead for the world of lead batteries. I would like to see more innovation to meeting these challenges, especially in the energy storage sector, which will be a big part of the future of lead batteries. Innovation is constant, and constantly necessary, because the use cases of lead batteries are changing. We need to be providing the new and innovative batteries of not just today but also the future. »
Miguel : « There is still much to discover and improve, and I think that since the materials of the batteries are cheap and abundant (but also safe and resistant), it will be very important in the years to come. On the other hand I think that production is too focused on the automotive industry. There is less and less demand for cars worldwide and energy is becoming more and more expensive, so I am convinced that the future is energy storage and back up systems. »
CBI : What can you learn from working with professionals who have been in the industry for a long time? What do you learn from each other in your projects ?
Max : « Professionals with a lot of experience have a wealth of knowledge and, but it is up to them to pass that on. I started from zero knowledge and having an experienced professional to provide guidance would have been of great help to ensure that I wasn’t misunderstanding things. Since being involved with the CBI, it has enabled contact with battery experts within companies and other universities. Some of them can share knowledge that is not as well known or written about in technical literature. And this leads to better experiments, better understanding and better development. »
Grace : « One of my favorite things about my job is the opportunity to network with everybody in the global lead battery chain. I’ve noticed that there is so much contribution on the field. For example, every time I have a call with a supplier, a partner, a specialist, I learn something new. And I feel they are always willing to help, they are so welcoming to answer my questions (and I do have lots of questions !). The Lead battery is not a technology that you learn through on college here in Brazil. So everything I know so far, I’ve learned from their experience. I’m really glad to see how some of the ideas I’ve given actually worked and contributed with the development of the projects. »
CBI : What things would you like to happen in the industry to attract more talent ?
Miguel : « There are two main things to attract younger professionals. The first is to raise awareness of the lead battery industry, communicating its importance globally and showing that it is possible to have a fruitful career in it. The second is to communicate that it is a technology that can help with very important problems that especially (but not only) the younger generations are going to suffer, such as the climate crisis, the energy crisis and the resource crisis. For me personally, it is essential that 99% of the lead in batteries is recycled. I would not like to work with a polluting technology that ends up accumulating in landfills. I also believe that research lines focused on renewable energy storage and batteries for trains (which is the most efficient and less polluting transport, both for people and goods), should be encouraged. »
Max : « From my perspective in the world of academia, I would like to see more PhD funding, more internships, sponsorships and more university partnerships. Early career development and career paths can encourage people to join. Another option would be a summer job/internship/work experience in a battery company. Getting young people into the world of batteries requires investment in them, and guidance. With the right support and guidance a PhD student can produce some excellent research. But without the right funding they will go to do something else, or a PhD in another field. »
Grace : « I believe the answer is undergraduate students. Talking about the Brazil scenario, I would like to see the industry work more with universities. For example, investing in programs to develop new projects for undergraduate students. I think that would be a win/win situation : The students would have the opportunity to work on a real life problem and learn about the lead battery from experts ; and the company would have the opportunity to work with new researchers and a new university department. This is a great way for students to be more prepared before they join a lead battery company.
I think even quick programs like a “Battery Marathon”, something like a Hackathon, would make students curios about the area and starttheir development from college. Today, at ITEMM we are already making this approach. Recently we started the implementation of a research and innovation center in a technical college in the city, focused on developing young talent.»
CBI : Would you recommend the lead battery industry as a place to work for young scientists?
Miguel : « I recommend the lead battery industry to anyone interested in energy storage. It is a well-known technology but there is still a lot of room for improvement, and research is always interesting and fun. From my work I especially like the direct relationship with the industry, which is eager to generate more and more research projects. This year at ELBC, I have learned a lot and it has been a very rewarding experience to learn about the latest advances in research and also to see what the market trends are. »
Grace : « I do recommend. The more I work on the field the more I see there is still so much room for new ideas. It is a great time to be working in the battery field! Environmental care is one of the major concerns around the world, and batteries are key to this! One of the great things about the lead battery industry is that we are a safe technology, critical for energy storage, which helps reduce the global carbon footprint. Something people forget is that we are also an industry that has a true circular economy. »
Both Max and Miguel won this year’s CBI & EUROBAT Student Award, a great way to promote their work in the industry by bringing them to ELBC 2022 as speakers. In 2022, CBI also visited ITEMM in Brazil, where we had the chance to meet Grace and learn about her work at the Research and Development Department.
Interested about their work with CBI? Check out our blogs and videos:
This European research collaboration aims to optimise lead battery performance for micro-hybrids. Researchers from Fraunhofer ISC and Wroclaw University are investigating the effect of carbon surface chemistry on the battery performance, and the goal is to understand which kind of surface chemistry is beneficial for improved charging and discharging behaviour for lead batteries.
Research projects like this one are proving to be relevant for wider scientific topics, such as low-emission vehicles, electrification and decarbonisation, as well as for carbon additive research.
According to Expert Group Manager from Fraunhofer ISC, Jochen Settelein, to follow the energy transition, batteries play a central role and lead batteries are safe, highly recyclable, produced at a low cost and the entire value chain exists within single countries or regions. By undertaking research and innovation into the lead battery technology, researchers are finding their way to adapt this « well-established technology » to the needs and requirements of the current energy transition.
Through this specific project, CBI is bringing together leading European researchers, scientists, and institutions to work towards a common goal, achieving CBI’s Technical Roadmap goals for the automotive sector, such as improving DCA.
Watch full video about this project here:
A key goal of CBI’s Technical Roadmap to improve the DCA of lead batteries, a technical parameter highly relevant for the automotive industry which encompasses lower emission vehicles such as start-stop, micro-hybrids and electric vehicles.
The CBI-funded project "Best practice of cell testing for EFB regarding DCA and high-temperature durability" delivers a significant improvement of DCA while also delivering uncompromised water consumption and improved corrosion durability.
With project partners from across the European value chain – universities TU Berlin and Fraunhofer ISC, car company Ford and battery manufacturer Moll in– this project encompasses the diverse players involved in Europe’s innovative lead battery industry.
As the automotive industry continues to move towards decarbonisation and electrification, new functions are required to increase safety and comfort. “These trends impose growing demands on the energy storage devices used within automobiles. In order to take advantage of these opportunities and defend against competition from other technologies, the lead battery must continue to adapt and improve”, explains Sophia Bauknecht from TU Berlin.
This project in particular is essential for the growing start-stop and micro-hybrid market as “Dynamic Charge Acceptance (DCA) and water loss are critical factors for the efficiency and lifetime of start-stop batteries, and they need to be improved to stay competitive with other battery technologies”, says Prof. Dr Julia Kowal from TU Berlin.
“Changes in the material synthesis and preparation are needed for cost-efficient and faster material developments. Especially if it works to measure the DCA from a simple measurement of a reduced size cell, improvement of DCA can become much faster because only small cells are needed for material screening and then only the promising materials need to be scaled up to complete batteries”, she continued.
Lead batteries are a vital part of automotive applications, including SLI, start-stop and micro-hybrid applications. As the industry shifts towards electrification, this technology will continue to evolve and adapt in order to provide better safety and security features through secondary low-voltage EV batteries, EFB and AGM batteries.
Pre-competitive research projects underway through CBI’s Technical Program, like this one, not only help CBI to develop better practices for the industry, but also strengthen the collaborative work between automotive manufacturers and battery application specialists to continue the innovation push driven by CBI.
Watch Part II video of CBI's visit to TU Berlin
Interested in related topics ?
CBI Research and Innovation Manager Position
Location Durham, North Carolina preferred
Contract Initial contract 18 months
Hours 35 (full time)
Job Summary
The Consortium for Battery Innovation, a rapidly growing global battery research consortium, is seeking candidates for an 18-month position as CBI Research and Innovation to be based at its North American office in Durham, North Carolina.
The successful candidate will have excellent scientific knowledge, ideally including battery technologies, in addition to strong communications and interpersonal skills. The candidate is expected to efficiently manage a diverse portfolio of technical activities working independently.
Required Qualifications
Preferred Qualifications
Job Responsibilities
This role will involve regular North American, European and Asian travel.
Compensation
The salary and benefits package will be commensurate with education and experience.
About CBI
The Consortium for Battery Innovation is a global innovation hub which supports cutting-edge pre-competitive research and promotion of innovation in lead battery technology. The consortium includes more than 100 member companies and organizations worldwide, consisting of lead producers, battery manufacturers, battery users, materials suppliers and research institutions.
The candidate would be joining a vibrant and dedicated team, with offices in Brussels, North Carolina, and London. More information can be found here.
Application
Interested candidates should submit a CV and cover letter to info@batteryinnovation.org by October 16, 2022.
We are committed to equal opportunities and creating an inclusive environment for all our employees. We welcome applicants regardless of ethnic origin, national origin, gender, race, color, religious beliefs, disability, sexual orientation or age.
The Consortium for Battery Innovation, a rapidly growing global battery research consortium is looking to appoint an experienced communication manager to support our corporate communications programme, handling the full range of disciplines including external, digital and member/internal communications.
The role will report to the CBI Director, and is an opportunity to help deliver and influence a wide range of innovative communications projects and campaigns in Europe, the US, Asia and Africa. The post will be based from the CBI office in Durham, North Carolina.
Job Title Communications Manager
Location Durham, North Carolina preferred
Contract Initial contract 18 months
Hours 35 (full time)
Required Qualifications
Job Responsibilities
This role will involve regular North American travel and occasional European and Asian travel (15-25% time)
Compensation
The salary and benefits package will be commensurate with education and experience.
About CBI
The Consortium for Battery Innovation is a global innovation hub which supports cutting-edge pre-competitive research and promotion of innovation in lead battery technology. The consortium includes more than 100 member companies and organizations worldwide, consisting of lead producers, battery manufacturers, battery users, materials suppliers and research institutions.
The candidate would be joining a vibrant and dedicated team, with offices in North Carolina, and London. More information can be found here.
Application
Interested candidates should submit a CV and cover letter to info@batteryinnovation.org by October 21, 2022.
We are committed to equal opportunities and creating an inclusive environment for all our employees. We welcome applicants regardless of ethnic origin, national origin, gender, race, color, religious beliefs, disability, sexual orientation or age.
The next North American CBI Technical Workshop will be held at the Durham Convention Center, Durham, North Carolina from 14-16 November 2022. The workshop will start at 2pm on the 14th November and finish at 1pm on the 16thNovember.
This workshop will cover:
Workshop only for CBI members. For more info about the event and CBI membership, please contact Anita Wright at anita.wright@batteryinnovation.org
CBI is co-organising an event with the India Lead Zinc Development Association (ILZDA), International Lead Association (ILA), International Lead Zinc Study Group (ILZSG), Indian Battery Manufacturers Association (IBMA) and the Recycling and Environment Industry Association of India (REIAI) to discuss the role of the lead industry in Energy Storage, E-mobility and Environment.
The International Conference on Lead & Lead Batteries will take place in New Delhi, India from 5-6 December 2022 and CBI’s Director, Dr Alistair Davidson, will talk about innovation for lead batteries and CBI's exciting new projects coming up involving energy storage systems.
This world class event is a great opportunity for stakeholders of the lead and lead battery industry to learn more about the latest technology developments and trends.
One of the highest priority goals set out in CBI’s Technical Roadmap is improving DCA –Dynamic Charge Acceptance for automotive lead batteries.
It’s a key area of work that CBI works with universities, research institutes, battery companies and car manufacturers around the world to tackle.
At TU Berlin, an ongoing research project has identified that on a battery level “single-pulse test for DCA and continuous overcharging for water consumption bear only weak correlation with results obtained under field conditions, particularly when most advanced (high DCA) battery technologies are addressed”, says Sophia Baucknecht, Graduate Research Scientist from TU Berlin.
As part of the research team made up of TU Berlin, Fraunhofer ISC, Ford and Moll, Sophia’s research aims for a better alignment and co-operation between car makers and battery application specialists.
With what aim? To establish best practice cell-testing for EFB regarding DCA and high-temperature durability.
These two metrics are vital for the enhanced performance of automotive lead batteries used across the global vehicle fleet, such as start-stop and micro-hybrids.
The research is increasing the efficiency of lead batteries by “finding out if lab-cell tests of DCA and water loss can be scaled up to a complete battery”, explains Prof. Dr Julia Kowal from TU Berlin.
If there’s higher efficiency and better charge acceptance, “less energy is lost during charging and braking and so the fuel consumption is reduced”, she continues. This is a critical step for automotive battery innovation towards decarbonisation and electrification for more fuel-efficient cars with a lower carbon footprint.
Watch the first video on CBI's visit to TU Berlin:
Interested in related topics?
The Global Lead Battery Innovation Conference and Expo (ELBC), co-organised for the first time by CBI, took place in Lyon, France (6-9 Sept).
As a warm-up to the main conference, CBI brought together lead battery industry experts from all over the world, to take part in:
On day one of ELBC, CBI’s Director (Dr Alistair Davison) set out a positive assessment of the opportunities for advanced lead batteries highlighting CBI’s roadmap, which charts a path to a new generation of batteries in a session dedicated to Markets and Trends.
And CBI technical experts, including Begüm Bozkaya, Technical Manager, outlined the CBI technical program with an insightful presentation focusing on improving energy storage systems and automotive batteries as key innovations in the industry.
To promote CBI’s Technical Roadmap and its work in driving innovation across the industry Dr Matthew Raiford, CBI’s Senior Technical Manager updated delegates. And in a major announcement, Dr Carl Telford impressed ELBC attendees with news of a 10 million Euro funding award for an innovative lead-battery powered microgrid project in Africa, brokered by CBI.
In his presentation entitled « Opportunities for Lead Batteries in Energy Storage Systems », Dr Telford spoke about the use of lead batteries for sustainable energy projects and presented for the first time this novel project funded by the European Commission that gathers lead batteries, renewables, and hydrogen.
As always at ELBC there were many networking opportunities, with delegates able to meet face to face for the first time in four years. The well-attended gala dinner took place at La Sucrière, and WGBI’s (Women in the Global Battery Industry) held its first meeting in Europe. This important initiative aims to bring more women to our industry and empower them through networking sessions, workshops, and mentoring opportunities.
CBI is very much looking forward to seeing all these fantastic attendees and delegates again at ELBC 2024 in Milan, Italy.
Watch the Event video:
The share of renewables for electricity generation by 2030 is expected to grow to 35%, and this global shift is relying on innovative technologies to harness this energy in clean, affordable and sustainable ways.
A big focus area for this shift is how to ensure that the clean energy transition fairly includes communities in parts of the world without reliable access to electricity or energy resources.
Responding to Europe’s Horizon call for funding proposals, a consortium of organizations spanning the energy, batteries, hydrogen academic and NGO sectors has joined together to develop a novel concept called LoCEL-H2.
Aiming to develop a sustainable, scalable, multi-vector energy solution to improve the lives of vulnerable communities, the project is based on renewables, battery storage and a novel hydrogen technology for cooking/fuel.
Low-cost, Circular, plug & play, off-grid Energy for remote Locations including Hydrogen, LoCEL-H2 is recognising the need for a fair energy transition across the globe and working to deploy pilots in two communities that have no access to reliable sources of energy.
This innovative concept includes battolyser hydrogen technology under development at Loughborough University, which will be used as cooking fuel for the communities where the modular off-grid energy solutions will be installed.
The future needs innovation. And it needs technologies to work together and complement each other to deliver innovative solutions for the clean energy transition. Bringing together different sectors, each with expertise in various technologies and energy solutions, LoCEL-H2 aims to ensure clean energy is paired with socioeconomic benefits for remote communities around the world.
See Press Release here.
Watch the first video about the project:
There are clear goals from the EU to decarbonize and decrease the reliance on fossil fuels. Understanding the fundamental contributors to lead battery failure at a molecular level will enable stronger cycling performance of lead batteries in all applications, such as microhybrid and energy storage applications. Batteries in these applications serve as the main tool to decarbonize the European utility grid and automotive fleet, the most important areas underpinning the EU Green Deal.
The main objective of this project is to analyze the different electrochemical processes and reactions that take place inside the battery electrodes during operation. To this end, CBI, INMA, and Exide Group are using, for the first time, in-operando neutron scattering techniques by placing real operating cells, built using the same components as in the factories, in a neutron instrument and collecting diffraction patterns and images from inside the cell, with both spatial and time resolutions, during the charge and discharge processes.
Also using neutrons because its penetration capacity in matter is much higher than that of other particles, as X-rays or electrons, used until now for battery analyses. In this way, it's possible to study real thick cells, about one centimeter in thickness, in real operating conditions.
This is an approach never used before in lead cells.
Learn more about this project through our project update video:
Every year since 1970 people all over the globe celebrate Earth Day to support the dialogue and actions taken towards the preservation of our planet, its environment, sustainability, and its future.
Today at CBI, we want to celebrate this day too by sharing some of the key ways in which the potential of our technology is being unlocked through research and innovation, to contribute to the goals of Earth Day.
Lead batteries are active in this space in two key ways: low-emission mobility and renewable energy storage.
One of our main research focuses at CBI is to expand the technology’s performance in the automotive industry, from start-stop technology to low voltage EV batteries.
We're working with leading research institutes, battery manufacturers, and car companies to drive forward this progress to improve dynamic charge acceptance (DCA). You can read more about these projects here.
Renewable energy storage also has a major role in the current energy transition across the globe, delivering clean, reliable power. Some of the recent examples we've added to our interactive map of energy storage projects, which showcases our members in all regions of the world providing advanced lead battery storage, are below:
This is just a snapshot of how the global lead battery industry is underpinning the clean energy transition in diverse sectors, from science and safari to manufacturing.
Innovation is key to sustainability. Technology progress is supported by fundamental scientific research into the chemistry, to help make better batteries, and CBI’s 2022 Request for Proposals is calling on industry, scientists, and researchers to join us on this innovation journey.
From energy storage systems using renewable energy to cutting-edge research developments, these are some of the highlights of our recognition of the importance of Earth Day, every day. As our mission to support the energy transition grows, CBI will continue to work with the global lead battery industry to ensure lead batteries are ready to meet future opportunities
Following this year’s International Women’s Day, we’ve interviewed some of the faces behind the communication strategies of our industry. People who work daily to demonstrate the effort of an industry towards climate goals, such as decarbonisation and electrification, while sharing messages of the industry’s work to achieve sustainable targets, science progress and innovation.
These are the professionals who are responsible for the communications of a long-standing industry, so essential in the digital world. They deal with a considerable amount of daily information and they’re able to transform the complex world of science to policymakers, business people and citizens in dynamic and understandable ways. And guess what? Many of them are women!
But why is it that the role of comms has become more important than ever? And what can these experts in the field tell us about the relevance of “sci-comms”?
According to Tammy Stankey, Director of Communications at The Doe Run Company, innovation in comunication is key in order to be modern and relevant, whilst for Fareha Lasker, Communications Manager at the International Lead Association, these are very exciting times to work for the lead and lead battery industry:
"The industry presents a dream messaging scenario — huge market demand combined with a key role for our technologies in the clean future of the planet means it’s a time of obvious and great opportunity. We know that the next 10 years will see unprecedented growth in demand for battery energy storage to support a clean energy future and that advanced lead batteries have a key role to play in applications which will enable rapid electrification of our economy and society".
The group agreed that it’s "essential" for investment in the industry’s comms departments, and as Niamh Owen-McLaughlin, Communications and Digital Manager at CBI, explained, it’s about telling a story of an experienced industry that has witnessed not only evolution but also "innovation, progress and research" and it’s also important to share the "importance of the technology" for the future :
"Without comms, a lot of our stakeholders would never hear the story of innovation that we have to tell, and would never think of advanced lead batteries as a technology which is used all over the world for clean energy storage, for vehicles, for low-emission vehicles and in so many more applications".
Tammy gave an example on how a strong comms department brings even more success to the industry :
"When I first became involved in the industry I was invited to sit on the Public Affairs and Marketing committee of what was then the ALABC (now CBI). As a communications professional it was obvious to me that our industry was suffering from a lack of visibility. Our committee pushed hard to have demonstration projects promoted at high-profile events such as The Battery Show. The greater visibility that these projects received, the more interest was created among companies to fund basic science research and demonstration projects. The effort is paying off, as we now see government agencies (such as the U.S. Department of Energy) proactively reaching out to our industry to identify the greatest opportunities for research and technology development to support the Energy Storage Grand Challenge".
But how is comms driving innovation in the industry?
"The more that we can communicate the innovation underway in lead batteries, driven by the efforts of the global lead battery industry, the more we can increase funding and opportunities for further research and development. We are showing that our technology is not one of the past but instead one that is currently used all over the world in so many diverse and critical applications, and that we’re confident through continued research that the innovation journey lead batteries are on has only just begun", Niamh continued.
Considering the amount of legislative and regulatory proposals in the pipeline around the world designed to improve and accelerate sustainable technologies, "by communicating the innovation in lead and lead batteries across many of these – from lead cables enabling wind power to lead batteries supporting EVs – we are ensuring our industries stand out among those. Communicators across our industry are successfully bringing together the right influencers across policymakers, regulators and industry to understand and appreciate that we are part of the innovative solutions to achieving their low carbon goals. In keeping us at the front of their minds, we’re ensuring we remain at the heart of the energy transition", completed Fareha.
Progress in the industry should also target goals of diversity within the workforce, as Lisa Dry, Vice President of Strategic Communications - Battery Council International and Essential Energy Everyday, explained :
"BCI’s leadership has recognized that the lead battery and recycling industry needs to reflect a more diverse and inclusive culture. One step in that direction is the new Women in the Global Battery Industry professional organization to help women in the industry grow their careers. Studies show that women are better employees than men in several categories including organizational development and coaching talent. At a time when the competition for employees is fierce, it’s critically important to help current employees reach their maximum potential."
There’s clearly a common desire to see more women working for the industry and reaching leadership positions, but to attract and retain bright minds we must be willing to reach out to a more diverse audience, something that the industry is very open to do:
"I have seen firsthand how open and welcoming the industry is to others and I have personally benefited from the comradery of the industry by getting involved. This has allowed me access to participate in various committees and even the executive committees of associations. I encourage other woman to look for opportunities to share their expertise and build their network in this industry", added Tammy.
Sci-comms is critical to demonstrate the innovation underway in our industry, and these communicators are responsible for sharing accurate messages in times where misinformation is a trend. This is our tribute to each and every professional behind a strategic comms role in the scientific field, where diversity is still not a reality.
In the words of the United Nations, both science progress and gender equality are fundamental achievements to reach the SDG Goals as part of the 2030 Agenda for Sustainable Development.
For this to become a reality, it is crucial to demonstrate the importance of having more women working in fields of science, and most of all to create conditions that empower and facilitate women to work in a sector traditionally dominated by men.
In 2015, the UN General Assembly declared February 11 as the “International Day of Women and Girls in Science”, as a way of fostering change in this field and turning these below stats around:
UN data from 2021
In this case, and like in any other sector, combining the strengths of all genders in the workplace can only create more space for better ideas, innovation, and progress in science.
Why is it so important to value women in science, but also in our industry in particular?
To better understand these issues and to see how they can be applied in our own industry, CBI spoke to four women who work in the global lead battery industry as researchers: Sibel Eserdağ (R&D Division Manager in Inci GS Yuasa), Sophia Bauknecht (Engineer at Technische Universität Berlin), Begüm Bozkaya (Technical Manager at CBI) and Maria Penafrancia Roma (Technical Collaboration Leader at Advanced Battery Concepts).
The idea was to show their perspectives, as women who work in mostly male environments, but more than that, to demonstrate why they are still working for the industry, why they believe their talent is crucial for it and why do they invite more women to join them in this challenging world.
According to the previously mentioned data, “women represent only 33.3% of all researchers” but considering the technological growth and the urge for progress and innovation in science and research, our group of four women agreed that is absolutely “crucial” to have more female researchers. Not only because of gender equality issues, but also due to the fact that it can bring more diversity of thinking which can only enrich the working groups, their talents and potential to do better things for the industry.
Sophia shared her thought:“that only with a higher number of female researchers it is possible to fully use the existing innovation and talent potential within a research area” and Maria noted that an “increased number of female researchers worldwide means that women with equal or even better capabilities are being given more opportunities now than in the past”. This will hopefully have a significant impact on other areas of the world, she continued: “this will mean that low and middle-income countries will see more women working on scientific and technological issues that can uplift their quality of life. Diversity and statistics will always lead to more revolutionary ideas that can change the world”.
What do women bring to science and to our industry?
According to Begüm, in many research areas “women face new challenges to meet the goals and targets in all levels of science”. Therefore, there’s a common “need” to provide a broader range of understanding and creativity:
“Encouraging the participation of women is essential, as men and women bring different perspectives to research and innovation. The diverse research groups in both academic and industry should combine various skills and abilities”.
But let’s be clear, “women can generate the same ideas and deliver similar results as any other gender in the room”, continues Maria. However, “there is a dearth of examples of this happening in the lead battery industry right now”. As Sibel highlights “like men, women bring their passion, patience, hard work and energy to the science and industry. But the important thing that women bring to science and industry is “diversity”:
“The lead battery industry seems to be a male-dominant industry from the outside however, it is proven by many articles and researches that diversity leads to innovation, so for innovation, industry and science we need more gender-balanced workforce.”
One thing is for sure, there’s a lot of admiration amongst women within the industry as they bring not only the obvious empowerment to each other, but also their perspectives, different backgrounds, skills and visions that add “a considerable value” to the industry, according to Sophia.
So, what advice would you give to a young female researcher starting/considering a career in the lead battery industry now?
We could not end this article without mentioning and promoting other women who are relevant references for our interviewees such as Dr. Kathryn R. Bullock, “whose vision, research and leadership led to revolutionary changes in the lead battery industry. She was a giant among men and the only female recognized by the Gaston Plante Award Committee in its 32 years of existence” (mentioned Maria) and Dr. Julia Kowal, a professor at TU Berlin who is “highly engaged in many committees to represent women in every aspect. She is carrying this additional workload to support other women in their academic career” (stated Sophia).
It's February 2022 when the “International Day of Women and Girls in Science” happens and CBI would like to celebrate every talent who is aiming to be a part of this exciting future for research and innovation, especially in the lead battery industry!
As part of CBI’s technical team, we’ve recently welcomed Begüm Bozkaya. With a BSc degree in Chemistry from the Middle East Technical University and an MSc degree in Materials Science from the Technical University of Munich, she gained extensive knowledge on the effects of carbon additives on negative plates for lead batteries, after using this as a Ph.D. research topic.
After working on several industrial projects for the past 6 years, Begüm joined CBI to gain a broader perspective on lead battery research as her role involves directly working with CBI’s global members from different companies and stages of the supply chain. She will be managing all of CBI’s European Technical projects as well as supporting CBI’s standards program.
According to her, CBI is doing what no one else in the industry is by “combining the knowledge from the industry and research institutes and collecting them in a non-competitive environment”. This means it’s possible to pool knowledge from a range of battery experts in order to advance lead battery technology for all applications, from energy storage systems to automotive.
As part of CBI’s team based in Europe, it is also important to look at the role of EU industry-research-academia partnerships in driving innovation. “We need to strongly defend the place of lead batteries. This is a well-established technology: we are cost-effective, recyclable, we have innovative research initiatives underway, and we’re committed to contributing to a cleaner future in the energy sector, especially to facilitate decarbonisation and support climate goals. It is vital that the EU includes all batteries in their future work plans”.
In that sense, the work developed by CBI through its Technical Roadmap has been essential to collect relevant information for lead battery applications and to help educate the audience regarding the future of this technology that has an enormous potential:
“If we can open new research topics and innovative ideas that can cover what we have in the roadmap, I’m sure lead batteries can still be considered a key player in the efforts to decarbonise, and developed further as a result. Research is the key point.”
When mentioning the new year and the developments that we can expect from advanced lead batteries, Bozkaya said that bipolar or advanced PbC batteries “can bring new research topics” for the industry and that these are “great candidates for EU initiatives”:
“There’s a bright future for advanced lead batteries and a lot of great research projects being developed as a result of CBI’s work, so I believe that in the near future we will be able to show even more how committed the industry is to Europe’s climate goals and, therefore be more involved with EU initiatives through lead battery research projects”.
For more information on CBI’s innovative technical program, click here.
The 4th edition of EASE’s Energy Storage Global Conference took place last week (19 – 21 October) in Brussels and online. With the support of the European Commission, the event provided three days of talks and discussions around the future of energy storage, its current market, policy frameworks and the latest trends in technology.
For the opening session, Maroš Šefčovič, Vice-President of the European Commission for Interinstitutional Relations and Foresight, spoke about the key role of energy storage and batteries to achieve climate neutrality by 2050, while highlighting its increasing demand to answer the new targets for renewable energy and carbon emission standards.
Šefčovič mentioned the importance of innovation and competition to keep investing in current technologies, improving performance and using advanced materials: “Europe must invest, not only in improving existing solutions but also in developing next generation breakthrough technologies”.
EASE’s President, David Post, also predicted battery storage of 7.7TWh by 2030 and highlighted the importance of supporting all technologies.
The last day of the conference was focused on discovering the latest cutting-edge energy storage technologies and CBI’s Research and Innovation Manager, Dr Carl Telford, spoke in a session dedicated to “Electrochemical and Electrical Energy Storage”, presenting the work that CBI has been developing through research and innovation for advanced lead batteries.
CBI's 2021 Technical Roadmap was presented to illustrate how constant performance improvement and technological advances can create limitless opportunities for the lead battery industry to help achieve global electrification and decarbonization targets.
While navigating through Europe’s funding landscape and showcasing European energy storage case studies using lead batteries (with Exide Group and Systems Sunlight SA), Dr Telford explained the challenges that the industry might face when applying through a “very complex” funding system, but also concluded with an optimistic note on the amount of opportunities that exist for energy storage and batteries in terms of public funding, proving that these are indeed necessary for the future:
“When considering the EU’s high-level goals, the speed of action required to mitigate the climate crisis, it is crucial that all energy storage solutions are not only available for deployment, but also encouraged”.
On October 4, CBI brought together a digital panel to discuss the critical role of batteries for Europe’s sustainable transition. As part of Europe's Sustainable Energy Week, supported by the EU Commission, the virtual event provided an open discussion around the importance of a level playing field amongst technologies in Europe and featured European case studies where advanced lead batteries are providing reliable, recyclable and safe energy storage.
CBI’s Research and Innovation Manager, Dr Carl Telford, opened the event by showcasing our recently launched Technical Roadmap, to illustrate that “sustainable economies need batteries”. If policy makers want to solve the problems of climate change and pollution, while moving from a linear to a circular economy, then industries will “need a proper deployment of battery technologies and energy storage”, and this is where Europe’s lead battery industry plays a key role.
From Exide Europe, Holger Fricke, Director Basic Research R&D EMEA, presented the benefits of Exide’s “on-site solar installation in Portugal”, that combines lead battery energy storage with renewable energy. Carbon emissions were reduced by more than 20% and energy management was improved, turning this case study into a real-world example of decarbonisation, with the installation facilities now being used as a showcase.
Peter Stevenson, Senior Technical Co-ordinator at GS Yuasa, joined the event to discuss the importance of hybrid solutions for Europe’s sustainable energy future. Using an example of the “world’s first container of dual chemistry energy storage system”, he highlighted the “complementarity and flexibility” between lead and lithium battery technologies.
While moderating the panel, Patrick Clerens, Secretary-General at EASE, reflected on the need of a level playing field between different technologies and stated that “no one can pick a technology winner”. Europe needs more batteries and new battery technologies, including hybrid ones, and through this it is possible to have “the best of both worlds”.
There are already some EU industrial and research initiatives going on to demonstrate how batteries can work together to reach the energy demands, such as the European Battery Alliance, Batteries Europe, Batteries 2030+ or IPCEI's. However, it remains important to share the message that a wide array of energy storage and battery technologies are needed to address the flexibility requirements and support the energy transition and the EU green goals, including lead batteries.
By the end of the discussion, it was clear that other industries can learn from the lead battery experience since it’s a well-established industry that represents a major example of circularity in Europe. Through research and innovation, enhancing the performance of lead-based technologies will be essential for Europe’s sustainable energy future and create further opportunities for synergies with other chemistries.
Watch the video of the event:
Download the presentations from the event below:
For the first time at the Batteries Event, held in September 2021 and organized by Avicenne Energy, there was a dedicated session for lead batteries. This is another major step for the industry demonstrating how this technology continues to evolve and is key to the current discussions within the energy sector.
Co-organized by CBI and EUROBAT, the session ‘Driving sustainable growth through LEAD BATTERY innovation’ brought up significant topics such as decarbonisation, circular economy and the work of the lead industry to upgrade and innovate for current applications such as clean energy and e-mobility.
Opening the session was EUROBAT’s Director Communications & Stewardship, Gert Meylemans, who noted that both lead and lithium will still be the dominant chemistries in the next decade.
Focusing on the numbers, lead-based technology will remain almost exclusively the preferred technology for 12V automotive applications, while continuing to be the dominant technology for UPS applications (Uninterruptible Power Supply) providing 90% of global demand and increasing by 5.5 GWh by 2030.
Our very own Research and Innovation Manager Dr Carl Telford introduced our recently launched Technical Roadmap to the audience and explored the funding opportunities for the industry within the EU.
CBI’s new Technical Roadmap is an expansive document setting out key research priorities for the industry for all applications using lead batteries. With a special section dedicated to energy storage systems solutions where lead batteries play a major role – from utility and renewable energy storage projects to hybrid solutions – the opportunities to enhance lead batteries through research and innovation have huge potential.
Dr Christian Rosenkranz from Clarios (also CBI’s Chairman) explored both CBI and EUROBAT Roadmaps, highlighting the “strong innovation potential of all battery technologies” and their contribution to the EU Green Deal, Fit-for-55 and net-zero pollution goals, as they:
To conclude this fantastic session, Dr Bernhard Riegel from HOPPECKE explored the innovation potential of electrochemical storage systems for industrial applications, an “ongoing process” for established technologies. High recyclability, low investment cost and low safety requirements were pointed out as the main advantages of the lead-based technology for the upcoming years.
The Batteries Event 2021 has ended but our work is now more exciting than ever with all the future opportunities for the technology and the innovation to come, driven by CBI’s Technical Roadmap.
On September 15, the EU Commission’s President made a State of the Union speech highly focused on the future: from investing in 5G, to improving research and innovation and making sure that Europe will reach the EU Green Deal goals. Ursula Von der Leyen pointed out some of the key aspects that rule our work at CBI and our dialogue with our members and companies from the industry.
Through NextGenerationEU, the Commission is committed to “invest in 5G and digital skills” as the demand for faster and more efficient networks increases, along with the explosion of AI, EVs and many other real-time autonomous applications.
“To ensure uninterrupted access to these services, telecoms and data centre back-up demand will increase exponentially” and this is where lead batteries have an important role. As the main option for the “uninterruptible power supply (UPS) energy storage needed for data centres and network rooms” representing 90% of global demand, lead batteries are a critical player for Europe’s digital transition.
But let’s not forget about the role of this technology for hospital back-up applications, incredibly relevant during the COVID-19 pandemic, by “ensuring uninterrupted power supplies”. In Italy and in the UK, FIAMM’s provided safe and reliable lead batteries to support hospital power.
Another wish from Von der Leyen is to achieve “European tech sovereignty”, which also includes the ability to supply the entire value chain in many highly demanded technologies, such as EVs, hybrid vehicles or renewable energy storage systems. CBI recognizes that all batteries are needed to give Europe the faculty to attain green goals and, as we invest in research and innovation for advanced lead batteries and work with world-class institutes, we are here to say that this technology is a critical player in the green transition by offering “high-performance, reliability, safety and a sustainability profile including almost 100% recycling at end-of-life in Europe”.
We are demonstrating that lead batteries can make EVs safer, that our members are involved in clean energy storage projects contributing to decarbonization and that this technology is a great team player when collaborating with other batteries and using the best of both chemistries for a more efficient outcome.
As the urge for a fair green transition and a cleaner energy society increases, CBI believes that the actions to reach 2030 goals must be taken now and that the potential and opportunities for advanced lead batteries are limitless:
This year is set to be the Year of Rail in Europe and the EU is also currently celebrating its Mobility Week.
In fact, there are many reasons to keep investing and improving this sustainable, innovative and fast transport mode. Not only does it add value from an economic perspective by contributing to the EU Green goals for 2050 while creating jobs and growth (note that: only in 2015, the rail sector employed directly 577,000 people according to an EU Commission's report ), but it also has a social impact by connecting people from all member states through seamless rail networks and reducing distance when it comes to commuting.
Therefore, thinking about the future of Europe’s Rail industry also leads to the future of its sustainability in our society - possible to develop through research and innovation.
In a recent article by Dr. Bernhard Riegel, Director of Research Development at battery systems provider for train operating companies, HOPPECKE Batterien GmbH & Co. KG, he notes that lead batteries are still the most widely used technology in Central Europe for supplying power to the onboard electrical systems of trains.
In the article featured on Charge the Future, Dr. Riegel discusses the unique blend of benefits offering by lead batteries for rail applications. At moderate temperatures they combine low maintenance requirements, reliability and low lifecycle costs. In many European trains, lead batteries are used to protect onboard power supply systems. Whether they provide emergency power supply for passenger cars, start the diesel engine for diesel locomotives or are used for direct drive, lead batteries play an essential role for rail.
CBI’s « rail road » to keep supporting research and innovation for lead batteries in order to significantly contribute to the EU green goals and future climate objectives of our planet, is linked to the knowledge that lead batteries have a tremendous potential to innovate and be used in many different applications in a highly sustainable, economic and safer way.
Dr. Riegel, also highlighted the growth potential of lead batteries in this and other sectors, from providing uninterrupted power to hospitals and back-up to telecoms and stabilise grids, to backing up renewable energy supplies and supporting hybrid and electric vehicles.
As we celebrate the EU’s mobility week, we recognize the many ways lead batteries are powering low-emission mobility and contribute to Europe’s low carbon future.