Battery Match Battery Match

How are batteries energizing the Future?  

The European Energy Transition 

By Nicola Filizola 

As the world copes with the urgent need to address climate change and reduce greenhouse gas emissions, Europe has been leading the charge in transitioning to a cleaner and more sustainable energy future. The European energy transition is a comprehensive shift from traditional fossil fuels to renewable energy sources, such as wind, solar, hydro, and geothermal power. Among the critical components enabling this transformation, lead batteries have emerged as a key technology that plays a pivotal role in the transition's success. In this article, we will explore the energy transition in Europe and delve into the essential role that batteries are playing in shaping the continent's greener and brighter future. 

The Growth of Renewable Energy in Europe 

The European Union (EU) has been at the forefront of advocating for clean energy and sustainability. Through initiatives like the European Green Deal and the Paris Agreement, EU member states are committed to reducing their carbon emissions, fostering innovation in clean technologies, and achieving climate neutrality by 2050. 

One of the main challenges of integrating renewable energy sources into the existing energy infrastructure is their intermittency. Solar and wind power, for instance, depend on weather conditions and daylight availability. To ensure a stable and reliable energy supply, an efficient energy storage system is essential, and that's where batteries come into the picture. 

The Challenge of Intermittency 

Unlike conventional power plants that can provide a consistent energy output, solar and wind power are dependent on weather conditions and natural variations. Cloudy days and calm winds can lead to a drop in power generation, causing fluctuations in the grid. This intermittency poses challenges to grid stability, and the power supply must be balanced in real-time to meet demand. If renewable energy sources are to dominate the energy mix, an effective and efficient energy storage solution is imperative to address this variability. 

Batteries: The Key to Storing Renewable Energy 

Batteries are essential components of the energy transition as they serve as a bridge between renewable energy generation and consumption. These energy storage systems can store surplus electricity when generation exceeds demand and release it when demand surpasses generation. In essence, batteries help to smooth out the intermittent nature of renewables and provide a stable supply of electricity to the grid. 

  1. Enhancing Grid Stability 

Batteries act as buffers, absorbing excess energy during periods of high generation and releasing it when generation dips. By doing so, they stabilize the grid and ensure a steady supply of electricity, reducing the risk of blackouts and power disturbances. Moreover, batteries can respond rapidly to fluctuations in demand, providing grid operators with a valuable tool to manage the grid effectively. 

  1. Empowering Decentralization 

The energy transition in Europe is also characterized by a shift towards decentralization, with an increasing number of small-scale renewable energy installations, such as rooftop solar panels and community wind farms. Batteries play a vital role in this decentralized energy landscape by enabling consumers to store and manage their locally generated energy. This promotes energy autonomy, reducing the reliance on centralized power plants and enhancing energy security. 

  1. Enabling Renewable Integration 

Batteries make it possible to integrate a higher share of renewables into the grid. By storing excess energy during periods of high generation, batteries ensure that the energy is not wasted and can be used during times of low generation. This feature is particularly crucial during seasonal variations when renewable output may vary significantly. 

  1. Facilitating Electric Vehicle Adoption 

Batteries also play a significant role in electrifying transportation, another essential aspect of the energy transition. The growth of electric vehicles (EVs) is dependent on advanced battery technology, allowing for longer driving ranges and faster charging times. Widespread EV adoption not only reduces greenhouse gas emissions from the transportation sector but also opens up the possibility of using EV batteries for grid storage through vehicle-to-grid (V2G) technology. 

In conclusion 

The energy transition in Europe represents a monumental effort to combat climate change and create a sustainable energy future. The integration of renewable energy sources is a crucial step in this journey, but their intermittent nature presents challenges that must be addressed. Lead batteries, together with other technologies, emerge as the silent protagonists, providing a robust and reliable energy storage solution. From enhancing grid stability and enabling renewable integration to empowering decentralized energy systems and fostering electric vehicle adoption, lead batteries will play a multifaceted role in reshaping Europe's energy landscape. As technology advances and costs continue to decline, the potential of batteries will only grow, propelling Europe towards a cleaner, greener, and more resilient energy future. 

CBI Spoke to Batteries International about the Status of the Energy Storage Market

The lead battery industry could be in line for a $10 billion share of the burgeoning energy storage market within the next decade.

Research into upcoming projects and opportunities indicated that the ESS landscape is forecast to be 550GWh by 2030 with a value of $30-$50 billion for all battery technologies.

The lead battery industry has set its sights on securing 100GWh of that potentially lucrative ESS market.

CBI launched its first technical roadmap in 2019 setting specific goals for the end of 2022.

“It was all really market-driven. We used those targets to select our program. And the result of the

projects that we funded have pretty much shown that we delivered on these goals that we set.”

There are now batteries on the market, primarily from our members in the US and Asia, that meet that criteria.

This means there are now have advanced lead batteries on the market-oriented toward ESS that have an impressive globalized cost of ownership for the system, says Raiford.

“The way we view it as battery scientists is cycle life — most key stakeholders look at it from total cost of ownership.

“So we see stationary batteries now that really perform along the lines of lithium.”

Read the full article from Batteries International

CBI Connects at 20ABC and Recycle100

The Consortium for Battery Innovation connected with over 730 attendees from 42 different countries representing 319 different organizations in Siem Reap, Cambodia for the 20th Asian Battery Conference (20ABC) and the Recycle 100 International Secondary Lead Conference and Exhibition that featured global discussions on the world of lead, recycling, lead-acid batteries and energy storage.

CBI Senior Technical Manager, Dr. Matt Raiford said that lead batteries are made and produced in over 100 countries, and the Asian Battery Conference was a great venue to see how Asia, Africa, and other areas of the world are innovating and improving lead battery technology.  For instance, CBI member companies, Hammond and Borregard, demonstrated deeper understandings of additive chemistry as a low threshold method to improve lead batteries for many different applications.

CBI participated in the line-up of over 45+ conference speakers during 20ABC to share our technical battery knowledge and insights with attendees with presentations that included:

The 20th Asian Battery Conference provided a chance to join several technical sessions providing valuable insights from industry leaders, market analysts and technical experts about the lead battery industry. Several speakers including CBI member companies presented innovations and advancements, such as new active material formulations and improvements in the manufacturing process, for several applications of lead batteries.

Dr. Begüm Bozkaya, CBI’s Technical Manager, shared that there are definitely future opportunities for lead battery technology in Asia and other continents of the world via the implementation of new developments to deliver cost-efficient, safe, and sustainable battery solutions.

8th International Secondary Lead & Battery Recycling Conference covered several aspects of lead recycling industry in Asia and Africa. Bozkaya shared that many of the speakers addressed the current issues related to environmental challenges, financial, and social risks in the secondary lead industry. It was beneficial for attendees as some of the ILA & CBI members also illustrated their new techniques and developments in recycling of lead batteries.

Recycle 100 illustrated the ins and outs of running battery recycling centers - the heart of lead battery sustainability. Raiford was intrigued by ongoing improvements at Asian recycling operations, especially in increasing recycling efficiency - and how these improvements were presented to representatives from dozens of countries.

The city of Siem Reap, Cambodia was an amazing host and we enjoyed seeing all the beautiful areas in that region. The 20ABC was a successful event from all angles – including the achievement from the event’s charity initiative. The "ONE Minute Giveback", exceeded organizer’s and sponsor Sorfin Yoshimura’s expectations, by raising over $22,000.00 USD to help fund a bed in the Oncology Department of Angkor Hospital for Children.

We look forward to next year’s events and continuing the technical conversations around lead batteries.

CBI 2023 Technical and ALBA Workshops

The CBI 2023 Techincal and ALBA Workshops were held on June 13-15, in Wolfsburg, Germany.

AfTrak is Awarded as a Semifinalist for the Milken–Motsepe Prize in Green Energy

A solar and lead battery-powered tractor, that is being developed as a farming solution for Africa, was named a semifinalist for the Milken–Motsepe Prize in Green Energy. The competition rewards projects who expand access to reliable, affordable, and sustainable electricity in Africa. 

AfTrak or Africa Tractor, is a prototype program funded by Innovate UK as part of its Energy Catalyst Round 9. The program was one of 20 teams selected to advance to the Semifinalist Round for a competition by the Milken Institute and the Motsepe Foundation. Semifinalists receive $20,000 for the continued development and testing of their designs, as well as complimentary access to a Stanford Online course to help build their businesses. 

AfTrak was selected from over 160 entrants around the world, in over 36 countries.  

This potentially revolutionary tractor design, featuring lead batteries, is an African farming project created in collaboration between the Consortium for Battery Innovation (CBI), UK- & Malawi-based charity Tiyeni, and Loughborough University. 


“We are delighted to be selected as a semifinalist in this prestigious competition—a reflection of the inspiration and technical capabilities of the Loughborough and Tiyeni teams. It’s also a great indicator of CBI’s ambitions.” said Carl Telford, Senior R&I Manager at CBI. 

Across large areas of Malawi, under the few inches of topsoil, there is a heavily compacted layer of rock-hard earth through which plants cannot penetrate. Tiyeni has created an innovative agricultural method called Deep Bed Farming (DBF). The tractor, being developed at Loughborough University, will be a low-cost, hand-operated, solution for farming in the difficult soil. 

The proposed AfTrak project is a micro electric tractor capable of mechanizing land preparation in line with Tiyeni’s Deep Bed Farming to prepare soil to a depth of 400mm. 

For this program, AfTrak aims to provide an affordable green energy solution in sub-Saharan Africa, utilize a solar array and lead battery system to power micro electric tractors for Deep Bed Farming, and create a self-sustaining model for decentralized energy access. 

An independent panel of expert judges determined the 20 teams receiving funding. Moving forward in the competition involves semifinalist teams demonstrating the effectiveness of their ideas in field tests.

They will be evaluated for their ability to: 

After the Semifinalist Round, judges will select five finalist teams to conduct another round of field tests in Africa. Then in May 2024, the judges will award a $1 million Grand Prize. A Runner-Up Prize of $250,000 will also be awarded. 

The Milken Institute is a nonprofit, nonpartisan think tank focused on accelerating measurable progress. They bring together the best ideas and innovative resourcing to develop blueprints for tackling critical global issues.  

The Milken–Motsepe Innovation Prize program is a series of multiyear, multimillion-dollar innovation competitions for technological solutions that accelerate progress toward the UN Sustainable Development Goals (SDGs). 

One of the two innovation competitions in the program, the Milken–Motsepe Prize in Green Energy, aims to expand access to reliable, affordable, and sustainable electricity in Africa as an essential factor in achieving long-term economic growth and shared prosperity. The competition advances progress toward SDG 7 (ensuring access to affordable, reliable, sustainable, and modern energy for all).   

The semi-finalists were announced on June 6, 2023.

More information: 

NOTE: AfTrak is the second bid application to be awarded to CBI in the past year after LoCEL-H2, a sustainable microgrid project using lead batteries and a novel, lead-battery-enabled funded by the European Commission under the Horizon Europe program. 

Improving Performance in Electric Vehicle Batteries  

CBI spoke to Marcus Young, an Associate Professor and Associate Department Chair for the Undergraduate Program at the University of North Texas (UNT) about a two-year project that kicked off in February 2023 to look at materials in low voltage (12V) batteries for electric vehicles in an effort to further improve performance of lead batteries.  

Lead batteries are still used in virtually every car on the road-from combustion engine vehicles through to Electric vehicles. Working alongside UNT, East Penn Manufacturing Company, and ECOBAT, CBI will further study the 12V battery electrochemical processes for materials and duty cycles common for lead batteries used in electric vehicles. By understanding more of how these batteries function in different charge conditions, temperature, and climate, we can determine what changes will attain a longer life span and better performance. 

Electric vehicles rely on lead batteries to provide safety functionality in the case of failure of the main propulsion battery.  This application is referred to as low voltage or auxiliary battery functionality. The lead batteries used in low-voltage EV applications use advanced alloys with different metallic additives to achieve current levels of performance. The study will focus on two specific additives, Ba (barium) and Bi (bismuth), and how their grain structure and influences on corrosion rates and crystallization would affect grid performance in the conditions found in EVs Previous research has shown that grids with Ba additives have reduced oxide formation, while Bi facilitates faster recrystallization. 

Using XRM – or X-ray microscopy, this project will investigate corrosion in batteries and look at the impact of Ba or Bi additives on battery life. The technique requires relatively thin samples to be used.  Extremely thin pieces have been created and used on the nano scale, so that they can be x-rayed. As the x-ray penetrates through these panels, researchers will isolate areas of interest and study the impact of aging time to see a source(s) of potential problems. 

Beyond lab-scale techniques, synchrotron experiments at the APS at Argonne National Laboratory will be used on large samples linking lab findings to real world lead battery products used in auxiliary applications.   

“We’re making battery life better for everyone,” said Young. He explained that ultimately this research will impact daily users as the battery storage community creates faster, better, and more efficient sources.    

New Clean Energy and Cooking Fuel Solution to Help Solve Energy Poverty for Isolated Communities in Africa

Planning is Underway for LoCEL-H2, a Four-Year, €10million Sustainable Energy Storage Project, Co-funded by the European Union

[LE BOURGET-DU-LAC, February, 2023] – A recently won European Union project by the Consortium for Battery Innovation (CBI) will pair advanced lead batteries with green hydrogen to deliver a new source of clean, reliable, and sustainable energy storage for off-grid communities in Africa. 

Awarded through Horizon Europe, this collaborative, four-year project called LoCEL-H2, (or Low-cost, Circular, plug & play, Off-grid Energy for remote Locations including Hydrogen), combines the expertise of lead battery manufacturers, academia, national laboratories, component manufacturers, and companies who are focused on integration, microgrids and renewables. 

LoCEL-H2 will generate renewable energy, storage, and fuel for deployment in isolated and remote regions of Africa, to support communities that cannot connect to an electricity grid. 

“The excitement around this innovative project is reflected by everyone involved,” said Dr. Carl Telford, the senior research and innovation manager at CBI. “Energy poverty is a problem that affects millions of people worldwide because they lack consistent access to electricity.”

The majority of the world’s population living in energy poverty are in Sub-Saharan Africa and are dependent on traditional stoves and fuels for their cooking. As a result, most of the domestic chores are handled by the women in these households, who then develop an increased health risk from a constant exposure to biomass, kerosene and/or coal fuels used for cooking.

Angel Kirchev, a senior expert, PhD, HDR, at CEA Tech and LoCEL-H2’s project coordinator
 holds up a sign during the kick-off meeting showing what this project will mean for off-grid communities in Africa.

The LoCEL-H2 project will provide a sustainable energy source as well as access to clean fuels. Another benefit will result in the education levels within these communities being positively impacted since they will now have access to online information through a reliable energy connection.

 “This project is important to help address the United Nations Sustainable Development Goal 7 (Affordable and Clean Energy), while having an impact on other areas such as health,” noted Dani Strictland, professor of electrical power engineering at Loughborough University and a member of the LoCEL-H2 partnership.

This project involves nine partner companies across western Europe who will develop new technology for a novel distributed microgrid, as well as a Battolyser. The Battolyser is a new solution for producing clean hydrogen technology to power cooking surfaces and would replace biomass fueled stoves. 

Whether as a response to climate impacts or future energy storage needs, advanced lead batteries are often an overlooked and innovative technology that bring safe, reliable, low-cost solutions to pair with a renewable source. 

By combining lead batteries with wind and solar power, this forward-looking energy storage project will deliver ongoing, affordable electricity to off-grid communities and become a deployable solution for other energy-deprived areas around the globe.

The two pilot areas for the project will be focused in Zambia and Ivory Coast. Angel Kirchev, a senior expert, Ph.D., HDR, at CEA Tech and LoCEL-H2’s project coordinator said, “CEA looks forward to coordinating this exciting and challenging 4-year project which will bring sustainable energy and green hydrogen to challenged communities.”

Watch our LoCEL-H2 Kick-Off Video here.

Image  Project Co-Funded by the European Union
The members of the partnership are CEA, Hoppecke, Hollingsworth & Vose, UNINA, Loughborough University, Sunkofa, University of Gabes, SAS Réseaux Hydrogène Décarboné RHYDE, and LUMS.

Contact: Lara Wilson

CBI Sr. Communications Manager

Lara.wilson@batteryinnovation.org   

 +1 (919) 287-1879

About Consortium for Battery Innovation

The Consortium for Battery Innovation (CBI) is the world’s only global pre-competitive research organization funding research into lead batteries for energy storage, motive, and automotive applications. For more than 25 years, with its global membership of battery manufacturers, industry suppliers, research institutes, and universities, CBI has delivered cutting-edge research pushing the boundaries of innovation in lead battery technology, setting the standard for advanced lead batteries and the next generation of energy storage.

For more information, visit our website: batteryinnovation.org

About Loughborough University

Loughborough University is the home of world leading engineering, with an international reputation for being at the forefront of technological innovation and for maintaining extensive links with industry. The Wolfson School of Mechanical, Electrical and Manufacturing Engineering is one of the biggest engineering schools of its kind in the UK.  The school aims to provide international leadership in research and innovation with a focus on climate change and net zero and has an unrivalled educational experience. Loughborough University is consistently in the top 10 in many university ranking tables for student experience.

Learn more at lboro.ac.uk/departments/meme/.

###

Innovation of Lead Batteries at East Penn Manufacturing

In January, a few members of CBI’s team visited eastern Pennsylvania to tour part of East Penn Manufacturing’s facility which produces over 500 types of batteries, including a large number of lead battery designs. Indeed, East Penn produces gigawatt hours of batteries every year – and is a real-world, established gigafactory.

Norbert Maleschitz, East Penn’s Executive Vice President & Chief Operating Officer, shared his excitement about the future of lead batteries. With innovation as part of their DNA, he explained that East Penn is pushing its technology further through an ongoing investment into R&D and Engineering. As lead batteries’ role in meeting future energy demands grows, Maleschitz and East Penn support improvements in manufacturing because they are key for enhancing technical solutions to both customers and the industry.

Dr. Matt Raiford, CBI’s Senior Technical Manager, inquired about the projects and enhancements underway at East Penn. There are several activities focused on improving electrode design, material innovations, and overall battery designs. The results will be a key part in continued performance improvements for lead battery technology and vital for ensuring that these batteries can meet future energy storage requirements.

CBI also had the chance to discuss and view some ongoing project work at the Briedegam-Miksiewicz Innovation Center R & D Department. Dr. Carl Telford, CBI’s Senior Research and Innovation Manager, met with Perry Kramer, Director of Technology, Research and Development at the Center and was able to look at how they are working with New Zealand-based development partner, ArcActive, to fully take advantage of the development of this novel technology.

Perry explained how ArcActive Technology features a carbon felt that replaces the standard lead grid structure of the negative current collector, enabling significant increases in charge acceptance. A battery featuring this technology helps to lower emissions in micro hybrid vehicle applications, and also improves the charging characteristics of the traditional 12 V lead batteries used in electric vehicles (these ‘auxiliary’ batteries power a vehicle’s accessories and critical safety functions).

Perry shared an overview of another large project that is focused on increasing cycle life. Bi-polar battery technology offers the potential to increase cycle life by three times over standard Absorbed Glass Mat (AGM) products while also reducing weight. The applications of this technology could range from use in automotive to reserve power and motive power, as well as other energy storage applications.

Telford and the rest of the team were particularly interested in East Penn’s work related to future manufacturing processes for lead batteries. Manufacturing needs to be very precise and predictable to enable the construction of a commercially successful, reliable, and dependable lead-battery product. East Penn has a large capability in manufacturing engineering and automation. Further innovations in manufacturing will provide the right mechanisms for extending battery longevity in future applications.

Finally, the team toured East Penn’s smelter and recycling facility. Lead batteries are a fantastic example of a product designed for complete end of life recycling, and currently over 99% of lead batteries are collected and recycled in North America. Their facility recycles everything including the acid. The facility recycles 182 million pounds of lead on an annual basis. In addition, they have a process in place to remove nitrogen oxide exhaust or off-gases and use them to create other products that benefit an adjacent industry.

Overall, CBI greatly appreciated the tour of East Penn to learn how their facilities’ efforts and leadership truly make the lead battery such an important contributor to global energy storage and a model for a more circular economy.