Partners: Technical University of Berlin, Fraunhofer ISC, Moll Batterien, Ford Aachen
Duration: August 2020 - September 2023
Objective: Improve laboratory, cell-level test methods for water loss, high temperature durability and dynamic charge acceptance
Partners: Fraunhofer Institute and Wroclaw University of Science and Technology
Duration: August 2020 - March 2023
Objective: Investigate various surface functional groups of carbon additives and their impact on the electrochemical behavior of lead-carbon electrodes for automotive applications
Partners: Borregaard, Cabot Corporation, East Penn Manufacturing and Hammond Group
Duration: December 2020 - May 2022
Objective: Investigate how varying content and ratios of both additives change the resulting battery performance regarding Dynamic Charge Acceptance (DCA), Partial State of Charge (PSoC) endurance, water loss, and corrosion
Partner: Electric Applications Incorporated
Duration: May 2020 - March 2022
Objective: Trial advanced charging algorithms as an enabler for lead-acid batteries to meet the life cycle requirements of the emerging battery energy storage system (BESS) market
Partner: UCLA
Duration: July 2020 - December 2021
Objective: Determine the fundamental mechanisms by which carbon additives to the lead-acid battery anode mitigate sulfation
Partners: Exide Technologies and Instituto de Ciencia de Materiales de Aragón (ICMA)
Duration: January 2020 - December 2020
Objective: Analyse the charge/discharge processes of positive electrodes in lead-acid industrial batteries by in-operando neutron diffraction experiments
Partners: Advanced Battery Concepts and EAI
Duration: December 2019 - August 2020
Objective: Verify the performance of bipolar lead battery technology using specific global automotive testing regimes