

Technical Project Series

Research on Positive Electrode Additives for Energy Storage Batteries

Expected Impact

This project addresses a common failure mode in stationary storage batteries: **the loss of positive active material**.

Results will provide **well-cataloged strategies and materials** for increasing the material cohesion and strength of positive electrodes during the rigorous duty cycles associated with **ESS applications**.

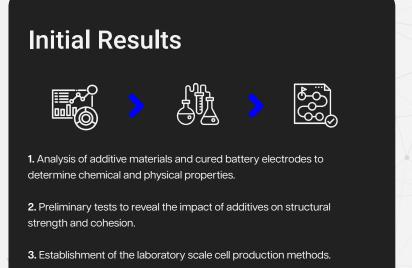
Objective

This project focuses on improving the **performance** of lead battery electrodes specifically in battery energy storage applications (ESS) like demand reduction or arbitrage.

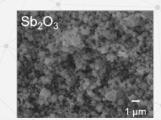
A family of additive salts in the positive electrode will be studied to maximize energy throughput.

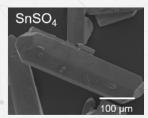
The study will focus on **reinforcing the positive active material** with salts such as antimony trioxide, graphite and other carbons, stannous sulfate, glass microspheres, and titanium oxides.

Project Info


Duration: 3 years

Partners: Jinkeli Power Technology Co., Ltd.


Focus: Energy Storage Applications


Location: China

Research Imagery

BET=7.870m²/g

Figure 1: Microscopic images of the additives (providing different morphological properties) used in positive electrodes.